
Blaise Editing Rules + Relational Data Storage = Best of Both
Worlds?
Richard Frey and Mike Rhoads, Westat

1. Introduction
Data editing is a critical part of the system lifecycle for survey research projects. Blaise offers flexible and
powerful data editing capabilities, and performing editing within the Blaise environment allows us to continue to
enforce the rules that were in force during data collection. While the native Blaise data storage format (bdb files)
provides an efficient mechanism to support case-by-case editing, it is not as well-suited for supporting aggregate
queries that would typically be expressed using SQL.

Since the Blaise Datalink facility now allows Blaise, using OLE DB, to access data in relational databases such
as Microsoft SQL Server, it is now possible to use a single data storage format (relational database tables) to
support both Blaise-based data editing activities and relational data queries. Blaise 4.8.1 also adds built-in
versioning to Datalink, thus providing an off-the-shelf mechanism for tracking all changes made by the data
editors. This paper describes our incorporation of these capabilities into a corporate data editing system.

2. Background

2.1 Data Editing Systems
Social science survey research is a process involving a wide range of tasks, including initial design and
development, the actual collection of the data, and data delivery and analysis. Some form of post-collection
review of the data is essential to ensuring the quality of the data and the reliability of the conclusions that can be
drawn from the information. Recognizing this truth, Westat has worked over the years to continually improve the
quality of its data editing systems and their integration into the overall project lifecycle (Dulaney and Allan
2001, Gowen and Clark 2007).

Since so much of our data collection is implemented using Blaise software, Blaise has also played a central role
in our data editing systems. Blaise offers a number of advantages when used in this manner, such as allowing
editors to review and update data either using the same screens seen by the interviewers, or using an alternate
layout if that would be more effective for a particular study. The most critical advantage of Blaise, however, is
its rules enforcement mechanism. Blaise data collection instruments are designed with range checks, skip
patterns, and other checks to enforce consistency of data as they are entered by the interviewers; clearly we do
not want this consistency to be lost at the data editing stage. By using Blaise for data editing as well as for data
collection, with the original data model used as a starting point, we are able to maintain data consistency without
having to reprogram all of the instrument’s consistency checks in some other software.

While we have used Blaise as the foundation of our data editing systems, we have typically augmented it with
other software, utilizing Manipula or the Blaise API as an interface as necessary. For instance, we have used
Microsoft Access for such tasks as managing the status of cases as they move through the editing system and
maintaining a data decision log to document all editing decisions. A more fundamental issue for us has been with
the native Blaise data storage mechanisms. BDB files work extremely well for storing both simple and relatively
complex survey research data, allowing efficient access to cases and the blocks and fields within them for both
interviewers and data editors. The underlying storage architecture is not relational, however, and thus is not
particularly well-suited for aggregate reporting requirements. In earlier versions of our data editing system, we
supported these needs by maintaining parallel data stores in Blaise and in a database, making changes to the
Blaise data and then propagating the changes to the database version of the data, either on request or on a
scheduled basis. While this proved to be reasonably satisfactory, we still hoped that at some point we could
eliminate the need for this redundant data storage.

2.2 Relational Data Storage and Blaise Datalink

2.2.1 The Basics
Fortunately, the Blaise Team at Statistics Netherlands also recognized the value in some circumstances of being
able to store data in formats other than native Blaise BDB files, and over the past several versions of Blaise they
have significantly enhanced the capabilities of Blaise in this area (Rouschen 2007). One of the biggest steps
forward came with Blaise 4.6, when it became possible to use an RDBMS to store not just external data, but the
actual questionnaire data itself, using a BOI file (which stores linkage information) in place of a native BDB file.

Another major improvement came with the introduction of “generic” data storage in Blaise 4.8. This supports
versioning of the data, which is important in a data editing environment.

Simply put, the Blaise Datalink facility allows the data used by a Blaise data model to actually be stored in a
non-Blaise format, such as Microsoft SQL Server, Oracle, or other relational databases. Datalink implements this
functionality using Microsoft’s OLE DB (Object Linking and Embedding, Database) technology. This means
that it is possible to implement Datalink for any data source for which an OLE DB driver exists. As a practical
matter, the type of Datalink system that we required is much easier to implement for a subset of the most
common relational data sources, for which Blaise takes into account the characteristics of the particular data
source, such as the maximum number of columns it can have in a single table. Blaise does provide such support
for SQL Server, which is the database that we are using for our editing system.

Datalink supports four distinct types of BOI files. For our purposes, we use the type of BOI file that is created
for an existing Blaise dictionary (data model). This type of BOI file supports not just basic field information, but
also field attributes (don’t know, refused), remarks, form information, and block information. It thus can be used
as the basis for a data model that supports data editing (or data collection, for that matter), exactly as a BDB file
could be used.

2.2.2 Data Partition Types
Once you have decided to use this type of BOI file, you need to determine which of the five “data partition
types” you want to implement. The data partition type determines exactly how tables are set up within the
relational database to store the Blaise data. We basically used a process of elimination to determine which data
partition type to use for the editing system.

The “stream” data partition type stores the data for each Blaise block as a single large column of data in the
database—as a binary “blob,” if you will. This maximizes the efficiency of processing by Blaise, since the data
for the block is already in the exact binary form that Blaise requires. However, these data blobs can only be
decoded by Blaise itself, which did not meet our requirement for a data storage mechanism that could support
SQL queries outside of Blaise in addition to within-Blaise access.

Datalink also offers “In Depth” and “In Depth Text” data partition types. Each of these types stores each Blaise
field as a row in a database table; “In Depth Text” stores all values in a single text column, while “In Depth” has
separate columns for numeric, string, and datetime data. The primary advantage of this storage mechanism is that
it minimizes the number of tables and columns required to store the data, while storing each data value in a
manner that is somewhat more accessible to non-Blaise software than is the stream type discussed above.
Nevertheless, this transposed storage format is still not a good fit for the way most programmers and analysts
design report queries. Therefore, we decided that these two data partition types did not meet our requirements
particularly well either.

The “Flat No Blocks” data partition type is almost the complete opposite of the “In Depth” partition types. The
latter results in a very tall, skinny data store: one table with only a few columns but a large number of rows,
since each nonempty field is stored in a separate row of the table. The “Flat No Blocks” type, on the other hand,
is an extremely short but wide storage mechanism: there is a distinct column for each iteration of each field (so a
block with 5 fields that repeats 20 times would produce 100 columns), and a single row for each Blaise form. In
theory, all of these columns would be in a single database table. With all but the smallest data models, however,
they are spread out over multiple tables, since databases limit the number of columns that a single table can
contain.

The disadvantage of this design for non-Blaise queries and reports is that it is not normalized. Imagine, for
instance, that the 5-by-20 block mentioned above is a household enumeration. Locating females in the household
would require a query that referenced each of the fields Sex1 through Sex20. Accordingly, we discarded “Flat
No Blocks” from consideration as well.

This left us with the “Flat Blocks” data partition type. With this structure, a separate database table is created for
every block type in the data model, containing a column for each Blaise field in the block. Each row in the table
represents an actual occurrence of the block in the data, e.g. a person enumerated within a household. Each table
also contains fields to identify the Blaise form and the instance number of the row within the block.

This data partition type is clearly the closest to the block structure of the Blaise data model, and thus provides the
most suitable layout for “natural” SQL queries. For instance, each person enumerated within a household will be
a separate row within the appropriate table in the relational database. If we want to obtain some information
about all of the females who were enumerated, we can use the single field Sex for filtering, rather than having to
use multiple fields as we would with the Flat No Blocks partition type.

For these reasons, we adopted the Flat Blocks data partition type as the basis for the data storage in the latest
version of our corporate data editing system. There are some nuances of this data storage arrangement that need
to be taken into account when designing queries and reports, and these are discussed later in this paper.

2.2.3 Generic Data Storage and Versioning
With Blaise 4.8, Statistics Netherlands further enhanced its Datalink capabilities by adding support for “generic”
data storage. This technique is intended to reduce the burden of RDBMS administration in an environment where
there are many surveys (such as a call center) by minimizing the number of tables that need to be created when a
new survey is added. This is accomplished by using a set of common database tables that can store data for more
than one survey (Blaise data model). Arno Rouschen’s 2007 IBUC paper provides a fuller explanation of generic
data storage in Blaise 4.8.

It is important to note that generic data storage is not a “data partition type.” Rather, it is a separate choice that
you make when setting up a BOI file to use Datalink. Generic data storage can be utilized with any of the five
data partition types discussed above. However, if your goal in choosing generic data storage is to minimize the
number of tables in your database (and thus administration burden), some data partition types are much more
compatible with this goal than others. In particular, if you choose the In Depth or In Depth Text data partition
type along with generic data storage, you can implement new data models under Datalink without requiring any
changes whatsoever to the structure of the database that is hosting the surveys.

The Flat Blocks data partition type that we are using for the Westat data editing system does not take full
advantage of this capability; new tables must still be created in the database corresponding to each block in every
data model. This was not a problem for us, since reducing database administration burden was not a particular
concern. In fact, given the large number of different clients for which we carry out data collection, combining
data from different surveys within the same database or data tables would create more difficulties for us than it
would solve.

The reason that we did decide to utilize generic data storage for our editing system is that it is required to support
the versioning capabilities of Datalink, which were also added to the system in Blaise 4.8. When versioning is
enabled, Blaise maintains both the old and new versions of records in the database whenever a record is changed,
using a special timestamp variable (BEGINSTAMP) to track the history of the record. This process is completely
transparent to those who are using DEP or Manipula to access the instrument; they only “see” the latest version
of each record. Since all versions are maintained in the database, however, they are accessible to SQL queries, as
well as to the new Blaise Data Center tool. In a data editing environment, having the capability to track all
changes to the data is obviously attractive.

3. Implementing Datalink for Our Data Editing System
The remainder of this paper discusses how we implemented the Blaise Datalink facility for our corporate editing
system. We begin by summarizing the capabilities and characteristics of the system. We then discuss the data
storage architecture of previous system versions and show how Datalink greatly simplified our data storage
strategy. We describe how Datalink stores the data within the relational database and present some issues to keep
in mind when designing SQL queries for the data. We conclude by briefly discussing some tools we found useful
when deploying and using the system.

3.1 Editing System Capabilities and Characteristics
As described in more detail in the next section, we incorporated the relational database storage capabilities
offered by Blaise Datalink into the latest version of Westat’s Blaise Editing System (BES). This system provides
a variety of data editing, reporting and processing options to projects. It includes a set of core capabilities and
can be customized to meet the needs of specific project applications. Figure 1 shows the main menu for one
implementation of the system.

Figure 1. Blaise Editing System main menu

While most of the data processed by the system has been collected using Blaise, this does not have to be the
case. For instance, we have used the system to review and edit data that originate in Cardiff’s TeleForm
software, which we use for paper document capture and processing. Since multi-mode studies may include CAI
and hard copy data collection components, this capability allows projects to apply consistent quality control and
edit processing regardless of the data collection mode.

In the latest version of the system, all data coming into the system are loaded into SQL Server so that we can
take advantage of the Blaise Datalink functionality. The data model used to collect the data (CAPI, CATI or
web) is replicated in the home office editing system with the SQL database. Editors review interviewer
comments and other specify responses and make updates by replaying the Blaise instrument. Using Blaise for all
data changes simplifies the data update process and improves data quality by preventing the unintentional
violation of skip patterns during the data cleaning process.

Updates made through interview or form replay are stored in SQL Server, and data decisions are recorded in
another database table. The BES decision log module permits projects with requirements to record the reason for
data updates to maintain this information in a centralized location while editing is in progress. BES maintains all
versions of the data, although only the latest version can be viewed by editors. Audit trails can be activated to
recreate prior data history.

BES also provides a variety of reports, covering a wide spectrum of functionality as requested by the project.
Reports can present details on workflow monitoring, case edit results, list cases, frequencies and cross-tabs,
coding reports, and reports of field comments and data issues. The system integrates with other stages of the
project lifecycle by permitting users to view PDFs of codebooks and data dictionaries, and annotated
questionnaires or other helpful documentation.

Metadata are maintained using a data dictionary interface. With each new instrument release, the data dictionary
is updated with the latest information from the Blaise or Teleform files.

The system normally operates on client computers connected locally to Westat’s corporate network. It can also
support remote access, with a security portal managing role-based access as appropriate to the user. VB.NET is
the primary development tool we used for the system, in addition to Blaise and SQL Server.

3.2 Moving From Many to One – A Simplified Data Storage Architecture
As discussed above, one of the requirements of our editing system was to be able to record and track all changes
that were made to data values. This is not an easy thing to do in native Blaise; when a change is made, the
previous value is gone. Previously, in order to implement the change tracking capabilities, we wound up using
multiple data stores, in BDB and Microsoft Access formats, for each instrument. The data flow for this earlier
version of the BES is illustrated in Figure 2.

As data collected by an interviewer arrived for the system to edit (typically in a temporary Blaise BDB file), two
separate paths were followed. In order to maintain an easily accessible version of the “original” data (i.e. all
values as they were entered by the interviewer), the data were stored in a Blaise Master Database whose values
were never changed. From this database, the initial data were also extracted into a Microsoft Access database,
and then loaded into the Decision Log Table. The latter is a “vertical” table, with the values of each instrument
field being stored as separate rows in the table.

As represented by the lower path on the data flow, the raw data were also stored into a Blaise Working Database.
This is the database that was used by the editing application. Once each case was cleaned, the data were
extracted into an ASCII file and then stored into the Edited Access Database. Then, all of the changed data from
this database were extracted and stored in the decision log table, which is what we used to track data changes.

While this system worked reasonably well, we felt that the architecture could be improved. As the discussion
above indicates, the system required a number of different data stores, and data transformations were required
between each data store. We used a variety of applications to develop these transformations, including Manipula,
Cameleon, the Blaise API, Visual Basic, Microsoft Access, and the SQL Server import/export wizard. Although
the transformations were not particularly complex, they did require us to develop and maintain a large volume of
code.

Implementing Blaise Datalink with its versioning capabilities allowed us to greatly simplify the design of the
system. Rather than having the large number of heterogeneous data stores and storage formats that characterized
the previous version of the system, we are able to use SQL Server for all of our data storage needs. We now
require a relatively limited number of tables, which can reside within a single SQL Server database.

We did decide to maintain a “vertical table” for change tracking, in addition to the tables that are provided by
Blaise Datalink. The Blaise implementation of versioning inserts a complete new set of rows into the database
tables whenever any values for a case are changed. This made it difficult to identify the changes in an automated
fashion; we found ourselves writing a considerable amount of code to compare rows, dates, and variable values
in order to determine which variables and values were changed. Our previously-developed vertical table
approach allowed us to store all information about changes in a central location, thus greatly simplifying the task
of reporting on data modifications. We streamlined our earlier approach by only storing the variable names and
values that changed, rather than all variables. This improvement greatly reduced the number of entries in this
table – more than tenfold in some situations, depending on the size of the instrument.

Figure 2. Data flow for previous BES

We started to develop Visual Basic modules to keep track of the cases being worked, identifying and extracting
all changes from the database tables once updates had been completed. We then realized that triggers and stored
procedures within SQL Server would provide a more elegant approach. Knowing that Blaise inserts new rows
whenever a data change is made, we created an insert trigger for each database table. When the trigger fires, it
calls a stored procedure that compares the values of variables from the “current” row to those in the row
representing the previous version of the data. It also takes into account Don’t Know and Refused entries. For
each difference that is found, we insert a new row into the vertical table that includes the case ID, variable name,
new value, and the login id of the editor who made the change.

Figure 3. Trigger template

Figure 3 above shows the template that we use to create the triggers for each of the project tables, of which there
may be 50-200 or more. As we discuss later in this paper, we created a number of tools to expedite the process of
setting a new project up in BES, one of which automated the process of creating these triggers.

3.3 How Datalink Stores the Data
As described earlier, Blaise Datalink offers a number of data storage options (data partition types), and it also
allows you to request “generic” storage. The way in which in stores data within your database depends on your
choices when you set up your BOI file. For the editing system, we use the Flat Blocks data partition type with
the generic data storage option (so that we can take advantage of versioning).

This combination of options results in a “hybrid” storage model, featuring some tables that are specific to the
data model and some that are truly generic. In order to query the data outside of Blaise, you need to understand
both sets of tables and how they interact.

For the Flat Blocks data partition type, the actual Blaise data are stored in Instrument Tables, which are specific
to a Blaise data model. Figure 4 shows the tables for one implementation of the editing system. This
implementation contains three data models: WES_CN, WES_EN, and WES_PS. Each table’s name begins with
the name of the data model, and there is one table for each block that is defined within the model.

create trigger [Place Instance Schema Name Here].Place Table Name Here_Update
 on [Place Instance Schema Name Here].[Place Table Name Here]
 for insert as
begin
 if exists (select table_name
 from Information_schema.tables
 where table_name='Place Table Name Here_Inserted' and
 table_schema='Place Instance Schema Name Here')
 begin
 drop table [Place Instance Schema Name Here].[Place Table Name Here_Inserted]
 end
 select a.*
 into [Place Instance Schema Name Here].[Place Table Name Here_Inserted]
 from (select * from inserted) as a

 exec [dbo].usp_DPQA_DataUpdates 'Place Instrument Name Here',
 'Place Table Name Here','Place Key Name Here',
 'Place Instrument Schema Name Here',
 'Place Instance Schema Name Here'

end

Figure 4. Instrument tables

Each of these Instrument Tables contains one column for each non-block field defined within the block, along
with a set of 5 special columns that comprise the primary key for the table. JOINKEY and DMKEY uniquely
identify a given Blaise case or form, while BEGINSTAMP distinguishes among different versions of the same
form. Of course, a block type may be used for more than one field in a data model, and it is common to define an
array of blocks. The BLOCKID and INSTANCE fields are used to differentiate these repeating occurrences of
block data within a form.

Blaise Datalink, when generic storage has been chosen, also uses a set of common Generic Tables, which are
shared among all of the data models in the database. These are shown in Figure 5. Most of them also contain the
JOINKEY, DMKEY, and BEGINSTAMP columns, which are the key (pun intended) to joining records from the
various instrument tables and generic tables.

Figure 5. Blaise Generic Tables

3.4 Querying the Data
The Flat Blocks data partition stores data in a relatively natural way. For instance, if you have a BJob block in
your Commute7Mod data model whose fields include EmpName and Distance, you will wind up with a database
table called COMMUTE7MOD_BJOB that will have a corresponding set of columns. In spite of this superficial
simplicity, however, there are some important things to keep in mind when querying Datalink data from outside
of Blaise.

3.4.1 Distinguishing Current from Historical Records
Remember that when the versioning function of Datalink is turned on, Blaise saves all versions of the data, not
just the most recent. While this is desirable when you want to keep track of changes, you have to be sure to filter
your SQL queries when you only want to process the latest version of the data.

Figure 6 shows the COMMUTE7MOD_BJOB table records from a simple data model. Note that there are two
sets of records for the case with JOINKEY=1 and DMKEY=1, distinguished by their BEGINSTAMP values.
The records with the latest values for BEGINSTAMP are current, while the others are historical. (Also note that
the EMPNAME for the job with BLOCKID=15 and INSTANCE=1 was changed from CDC to NCHS.)

Figure 6. Table with current and historical data

The primary mechanism that Blaise Datalink uses to track record versions is the generic table BLAISE_FORM.
Figure 7 below depicts this table for the same datamodel and set of data. You can see that there are two records
for the case with JOINKEY=1 and DMKEY=1, indicating that two different versions of that form are
represented in the database, while there are only single versions for the cases with JOINKEY values of 2 and 3.
Blaise uses a special value of ENDSTAMP, 9999-12-31 00:00:00.000, for rows in this table that correspond to
current data. Therefore, the JOINKEY, DMKEY, and BEGINSTAMP values for such rows can be used to
identify “current” data rows in any of the other tables. For other rows in BLAISE_FORM, the BEGINSTAMP
and ENDSTAMP values can be used if desired to identify the time period during which records with
corresponding JOINKEY / DMKEY / BEGINSTAMP values were valid. ENDSTAMP, in other words,
effectively acts as an expiration date.

Figure 7. BLAISE_FORM table

3.4.2 Remarks, Open Text, Don’t Know, and Refused
Interviewer remarks and open-text fields are not stored in the Instrument Tables. Instead, they are stored in the
generic tables BLAISE_REMARK and BLAISE_OPEN, respectively. Figure 8 shows a sample remark record
from our Commute7Mod data model.

Figure 8. Sample remark record

We see that this table contains a REMARKTEXT column, our usual trio of ID variables (JOINKEY, DMKEY,
BEGINSTAMP), and a column called FIELDID. This latter column can be used to identify the field for which
the remark was entered, in association with the BLAISE_ID table. This table associates a numeric identifier with
each block and field in your data model, making it the equivalent of the Rosetta Stone for understanding how
your data are stored. (Note that the creation of this table is optional when creating a new BOI file – be sure to

include it if you want to access your data outside of the Blaise environment!) Figure 9 illustrates a portion of this
table.

Figure 9. Selected rows from BLAISE_ID table

As can be seen from the example, the field that is referenced in the BLAISE_REMARK table (ID value of 9) is
Person[1].Age. This makes it relatively easy to join these two tables to identify the fields that correspond to each
remark.

The text for Blaise fields with type Open are stored in a similar manner, using the BLAISE_OPEN table.

Blaise field attributes (Don’t Know, Refused) are also stored in a generic table, rather than in an instrument-
specific table. In this case, the BLAISE_DATA table is used, as is shown in Figure 10.

Figure 10. BLAISE_DATA table

Since we are using the Flat Blocks data partition type, the last four columns of this table will always be null.
(When one of the In Depth partition types is in effect, these columns are used to store the actual data values.) As
with BLAISE_REMARK and BLAISE_OPEN, FIELDID identifies the field in question, while JOINKEY,
DMKEY, and BEGINSTAMP identify the case and version. STATUS contains a numeric value corresponding
to the field’s attribute; Don’t Know values are represented by a STATUS value of 4, while Refusals produce a
value of 8. Only fields that have a special attribute for a given case have rows in this table.

As with remarks and open text, it is relatively easy to link the BLAISE_DATA and BLAISE_ID tables to
identify which Blaise fields have Don’t Know or Refused values for a particular case. Unfortunately, if you want
to issue a SQL query that shows all of the field values for a particular block, pulling in the attribute information
is not nearly as simple. Such columns will have null values in the corresponding instrument table for the block,
but we might want to know specifically whether the response was Don’t Know or whether it was Refused.
Repeating blocks complicate this even more, since each instance of a field will have a separate FIELDID value.

Although cumbersome, the information in the BLAISE_ID table does make it possible to construct such queries.
We can take advantage of the fact that the ID values of blocks and fields in the table are assigned in a regular
pattern. For instance, for the Marstat field in our BPerson block, we can query the BLAISE_ID table to
determine the id values for that field and for its block, as shown in Figure 11.

Figure 11. ID values for Person and MarStat

Noting that the ID values for the instances of the Person block field and its MarStat field repeat in regular
patterns (11 and 36 respectively), we can construct a query like the following that displays selected fields from
this table for the current version of all cases.

SELECT
 BP.JOINKEY, INSTANCE, NAME, GENDER, AGE,
 CASE
 WHEN MARSTAT = 1 THEN 'Yes'
 WHEN MARSTAT = 2 THEN 'No'
 WHEN MSATT.STATUS = 4 THEN 'DK'
 WHEN MSATT.STATUS = 8 THEN 'REF'
 ELSE 'INAPP'
 END AS MARSTAT_TEXT
FROM
 dbo.BLAISE_FORM AS BF
 INNER JOIN dbo.COMMUTE7MOD_BPERSON AS BP
 ON BF.ENDSTAMP = '9999-12-31 00:00:00.000'
 AND BF.JOINKEY = BP.JOINKEY
 AND BF.DMKEY = BP.DMKEY
 AND BF.BEGINSTAMP = BP.BEGINSTAMP
 LEFT JOIN dbo.BLAISE_DATA AS MSATT
 ON BP.JOINKEY = MSATT.JOINKEY
 AND BP.DMKEY = MSATT.DMKEY
 AND BP.BEGINSTAMP = MSATT.BEGINSTAMP
 AND MSATT.FIELDID BETWEEN 10 AND 334
 AND (BP.BLOCKID * 36) + 2 = MSATT.FIELDID * 11
ORDER BY
 BP.JOINKEY, INSTANCE

Clearly this is cumbersome – one would not want to code this by hand very often, if ever. Computers,
fortunately, are good at such menial tasks, so you could certainly automate the process of developing a set of

queries or database views to meet your needs. These would require joining a separate instance of
BLAISE_DATA for each field that allows Don’t Know or Refused values, so performance would have to be
evaluated.

3.4.3 Linking Up Associated Records
When you define an array of blocks in your data model, the INSTANCE variable in the corresponding
Instrument Table can be used to identify the array element for a given row in the table. Thus, in our
Commute7Mod data model, where we have an array of persons within a household, INSTANCE is equivalent to
a person-number field. When arrays are nested, however, INSTANCE only works at the innermost level. For
example, if we can have multiple jobs for each person in a household, INSTANCE identifies the number of the
job for the person in question, but there is no direct way of identifying which person holds the job. Here again
we can use the information in the BLAISE_ID table (see Figure 12 below) to derive a higher-level identifier
should we need to do so – for instance, to join person-level and job-level items.

Figure 12. IDs for Person and Job blocks (partial)

SELECT
 BP.JOINKEY,
 BP.INSTANCE AS PersNum,
 BP.NAME,
 BJ.INSTANCE AS JobNum,
 BJ.EMPNAME
FROM
 dbo.BLAISE_FORM AS BF
 INNER JOIN dbo.COMMUTE7MOD_BPERSON AS BP
 ON BF.ENDSTAMP = '9999-12-31 00:00:00.000'
 AND BF.JOINKEY = BP.JOINKEY
 AND BF.DMKEY = BP.DMKEY
 AND BF.BEGINSTAMP = BP.BEGINSTAMP
 INNER JOIN dbo.COMMUTE7MOD_BJOB AS BJ
 ON BP.JOINKEY = BJ.JOINKEY
 AND BP.DMKEY = BJ.DMKEY
 AND BP.BEGINSTAMP = BJ.BEGINSTAMP
 AND BJ.BLOCKID BETWEEN BP.BLOCKID + 1 AND BP.BLOCKID + 9
ORDER BY
 BP.JOINKEY, BP.INSTANCE, BJ.INSTANCE

Here again, automated views can be generated to hide the complexities of the SQL.

3.4.4 Beware of the Secret Data
At one point when we first started working with Datalink, we used SQL rather than a Blaise module to change
some data values. After doing so, we were greatly surprised to look at the data with Blaise and still see the old
values. The Statistics Netherlands team informed us that (in the words of the current documentation), “Fast
reading is enabled by default for BOI files which support record streams. When using a BOI file that supports
record streams then the complete data of a Blaise record will be stored as a binary stream in the relational
database. ... if fast reading is enabled, then Blaise will read the record data from the record streams, instead of
the data that is stored according [to] the given data partition type. This means that whenever you manually
change the data in the 'normal' data tables, that you won't see the changes in the Blaise client tools like the DEP
and Dataviewer.”

The documentation indicates that you can avoid this problem by disabling Fast Reading. We decided that the
better part of valor was to limit our non-Blaise access to readonly queries, leaving all data changes in the hands
of Blaise.

3.5 Tools
While we were developing the latest version of the Blaise Editing System, we found that deploying a new
instance of the system still required a number of manual processes. In order to expedite the system deployment
process, we devised a Generation Tool to automate the most repetitive parts of the process. This tool, as depicted
in Figure 13, allows us to generate:

• the database schemas,
• the triggers for each table,
• the .BOI files and the Blaise generic tables,
• meta tables, and
• database views.

Figure 13. Generation Tool

The driver behind the Generation Tool is an .ini file. This file contains information about the SQL database,
datamodels, schemas, the .boi template, and other study-specific items.

In addition to developing our own tools, we also found the new Blaise Data Center to be extremely useful for
providing quick and easy ad hoc access to the data without having to write SQL queries or other programs
(Figure 14).

Figure 14. Data Center Record View
One of the Data Center’s most valuable features is its ability to export subsets of records and variables. We have
also used it to verify the data changes made in the Blaise Editing System, as shown in Figure 15.

Figure 15. Data Center version differences

4. Conclusion
The latest version of Blaise Datalink, with its generic storage and versioning capabilities, provides a solid
foundation for systems where tracking data changes is a requirement and you also need to query the data outside
of a pure Blaise environment. The incorporation of Datalink into the latest version of our Blaise Editing System
has resulted in a system that offers enhanced flexibility for our projects while also being simpler and easier to
maintain.

5. References
Dulaney, Rick, and Boris Allan. “A Blaise Editing System at Westat.” Proceedings of the 7th International
Blaise Users Conference. September 2001.

< http://www.blaiseusers.org/2001/papers/Dulaney--Blaise_Editing_System_at_Westat.pdf > (April 26, 2009).

Gowen, Linda, and Pat Clark. “Lifecycle Processes to Insure Quality of Blaise Interview Data.” Proceedings of
the 11th International Blaise Users Conference. September 2007.

< http://www.blaiseusers.org/2007/papers/D4%20-
%20Lifecycle%20Processes%20to%20Insure%20Quality%20of%20Data.pdf > (April 26, 2009).

Purohit, Yogeeta, and Latha Srinivasamohan. “Conversion of Blaise Databases to Relational Databases.”
Proceedings of the 11th International Blaise Users Conference. September 2007.

< http://www.blaiseusers.org/2007/papers/P1%20-
%20Conversion%20of%20Blaise%20Databases%20To%20Relational%20Db.pdf > (April 26, 2009).

Rouschen, Arno. “Generic Data Storage with Blaise 4.8 Datalink.” Proceedings of the 11th International Blaise
Users Conference. September 2007.

< http://www.blaiseusers.org/2007/papers/A2%20-%20Generic%20Data%20Storage.pdf > (April 26, 2009).

