
Different Methods of Working with Blaise®
in the
Israel Central Bureau of Statistics
Shifra Har and Evgenia Luskin, Israel Central Bureau of Statistics

1. Introduction

The Israel Central Bureau of Statistics (CBS) is using the Blaise software for more than 10 Years. This software
is used in the development of many surveys – especially in the arena of families' surveys and individuals'
surveys. More than 20 systems have been developed using the Blaise software. In particular I'd like to mention
that Blaise was used to develop the CBS population and housing census questionnaire that was conducted in
2008.

Some additional surveys that use Blaise include the labor force survey, the family income survey, the social
survey, the health survey, the first degree graduates survey, the crime survey and more.

At first we have used the Blaise tool for questionnaire development and Manipula for the survey management
systems. We overcame the problems we had with the Hebrew language, which is written from right to left, in
developing the surveys. During time we have also found solutions to the problems of keying-in two additional
languages: Arabic and Russian. Today the questionnaires for all of our surveys are allowing enumeration in these
three different languages.

As time went by the developers work procedures have changed, new tools, software development languages and
databases were introduced – so we combined the use of several tools to get the maximum benefit from each tool.
Despite all of the above, we still keep the Blaise as the main tool for developing surveys.

Massive work with the Blaise software gave us the ability to gain huge experience in using the different Blaise
tool components. With time, the computerized Blaise questionnaires became more complex and combined
different modes of data collection: CAPI (Computer-assisted personal interviewing), CATI (Computer-assisted
telephone interviewing) and CADI (Computer-assisted data input). These kinds of complex surveys demanded
more complex management systems as well.

We are about to start the development of a system for generic management of surveys that include different
modes of data collection. The CBS decided to use Blaise for developing the questionnaires for all of the
enumeration techniques for this generic survey management system.

The CBS puts a main emphasis on information security. One of the issues we are handling is the writing of
secure code. The development methodology of the CBS demands that we put special attention to the fact that the
enumerators are sending us information from all over the state of Israel through the internet network which is an
unsecured network. This means that we must use encrypted data to transfer the survey information. It is not
enough to develop safe communication; additional steps are taken in each individual computer so that the
software code and the data itself are secure. "Information noise" is entered into the data, so if anyone is listening
they will not be able to decipher anything.

We can distinguish between several methods of working with the Blaise tool when developing computerized
surveys:

1.1. The "Blaise + Manipula" method
The first method is using the Blaise and Manipula in a natural way. The questionnaire is written using Blaise, the
management system is written using Manipula and the data is stored in the Blaise database.

1.2. The "Blaise + .Net" method
In this method the questionnaire is written using Blaise, the management system is written using .Net, the
questionnaire data is stored in the Blaise database and the survey management data is stored in an SQL server
database.

1.3. The ".Net + SQL" method
In the last method the questionnaire is written using Blaise, the management system is written using .Net, both
the questionnaire data and the survey management data are stored in the an SQL server database.

Each of the above three methods has its own advantages and disadvantages. Before each new survey there is an
examination of which method is the most suitable for that survey.

2. The different methods of working with Blaise

In the following sections I will go into detail and give examples for surveys that were done in each one of the
three methods. I will note the advantages and disadvantages of each method as well.

In general, the CBS has been conducting surveys in all three methods, but in recent years the direction is to
develop more systems with .Net (the last two methods) and less with Blaise only (the first method).

2.1. The "Blaise + Manipula" method

Historically, this is the first method that was used. The CBS labor force survey, social survey and health survey
were written 100% in the Blaise tool. The survey management system in the survey gathering center and in the
laptops was written in Manipula.

Advantages of the "Blaise + Manipula" method:
The Blaise language enables quick development which helped us move quickly from paper surveying to
computerized surveying. The systems have proven their stability and efficiency.

Disadvantages of the "Blaise + Manipula" method:
Manipula is limited as a development tool. The limitations are especially noticed in the screen designs, batch
activities in the management system and multi users' capabilities.

We still use the "Blaise + Manipula" method for relatively small and simple surveys. This means surveys that do
not use the CAPI mode of data collection and there is one coordinator that controls the data gathering.

Examples for current usage of this method are the first degree graduates survey and the public transport
satisfaction survey. The first labor force survey that was developed in this method has already been replaced
with a more advanced system.

In the social survey we still use the old management system but the new management system is under
development and will be in production in 2010.

2.2. The "Blaise + .Net" method

In this method the questionnaire is written using Blaise, the management system is written using .Net, the
questionnaire data is stored in the Blaise database and the survey management data is stored in an SQL server
database.

Starting from Blaise version 4.6 and with the help of the module BCP 2 we are combining Blaise and .Net in two
ways; from Data Entry Program (DEP) to .Net and from .Net to DEP.

Examples for usage of this method:

2.2.1. From DEP to DLL that is written in .Net

In the questionnaire of the social survey the finding and marking of streets is done with DLL. In the
questionnaire of the health survey the DLL checks the validity of key fields and inserts data into the
questionnaire from an SQL management table.

In figure #1 in the appendix we can see two procedures:

 The procedure GetMezahe returns the output from the validity checks in the parameter p_TozaatPkida
 The procedure GetSqlData brings data from the SQL database to the export parameter list.

2.2.2. From .Net to DEP

In a management system that is written in .Net there are calls to DEP for surveying or questionnaire editing, for
calls to Manipula programs and for different activities done with Blaise tables.

Advantages of the "Blaise + .Net" method:
Utilizing the strong abilities of the Blaise language which include quick development, ease of changing a
questionnaire and stability. Using this with .Net gives us a solution for the screen design problems and gives us a
wide variety of development options. Performance of activities with SQL tables is much faster than with Blaise
tables so the management system is much more friendly and quick.

Disadvantages of the "Blaise + .Net" method:
The performance of activities using Blaise tables is relatively slow compared to SQL tables.

Examples for current usage of this method are the labor force survey which is already in use and the social
survey which is still under development.

2.3. The ".Net + SQL" method

In this method the questionnaire is written using Blaise, the management system is written using .Net, both the
questionnaire data and the survey management data are stored in the an SQL server database. During the survey
only one questionnaire exists in the Blaise questionnaire table. After exiting from the questionnaire all of the
data is transferred to an SQL table and deleted from the Blaise table.

Actually we are using Blaise as the GUI for the surveying screens. In this method we need to develop two
modules. The first is for storing the Blaise data into SQL and the second is for uploading the Blaise
questionnaire from data stored in the SQL. Both modules are written in .Net.

In figure #2 in the appendix we can see part of a management program that creates a Blaise table, fills it with
data from an SQL table, entering DEP, exiting the questionnaire and saving the data in SQL and at the end
deleting the Blaise table.

Advantages of the ".Net + SQL" method:
Using this method gives us great performance compared to the first two methods. It utilizes the Blaise strong
abilities as a language for questionnaire development, the ease of changing a questionnaire and the stability of
the DEP software.

Disadvantages of the ".Net + SQL" method
This method requires the creation of an SQL table for keeping the questionnaire data. Each change in the
questionnaire like adding a question or changing the definition, requires a change in the SQL table as well.

The two additional modules that are required for transferring the data between the Blaise tables and the SQL
tables are very large. There must be reference in these modules for each field and the structure of the fields
should be identical. This requires a long development and debugging time.

The Blaise advantage of fast development is diminished with the need to update these additional modules with
every change.

So the main disadvantages of this method are lack of flexibility and long development time.

A good example for the ".Net + SQL" method can be found in the 2008 CBS population and housing census.

The methodology for the population and housing census survey is a new methodology called the integrated
census. This census is based on an integrated use of data from administrative files, together with sample data
gathered in surveys, i.e., in the census field work of 20% of the population. For the questioning of 20% of the
population, which is about 320,000 households, we used laptops that contained the Blaise questionnaire.

The questionnaire held approximately 300 questions and was comprised of three parts: questions about the
apartment, questions about the household and questions about the individual. The questionnaire format is similar
to the labor force survey questionnaire.

Approximately 2500 enumerators and coordinators participated in this survey. Two management systems have
been developed, one for the enumerator and one for the coordinator. Due to the amount of users and the survey
requirements the main criteria for the system was good performance – that is why the development method that
was chosen is the ".Net + SQL" method.

Modules for data transfer between Blaise and SQL where written in C-Sharp. This enabled good performance in
the laptop system and also in the management systems that were located in the regional offices and the national
management system.

For the survey data two SQL tables were created; one for the survey answers and the second for different
statuses: "response", "don't know" and "refuse". In figure #3 in the appendix we can see part of the software that
was developed for the population and housing census in which the questionnaire is being filled from the SQL
data and entered into DEP.

The objective of the developers of the census questionnaire was to create a surveying procedure for an
enumerator that is not skilled. The enumerators training was very intensive but still many of the
enumerators and coordinators didn't have experience working with laptops or didn't have surveying
field experience before being recruited for the job.
This is why the questionnaire developers made the text of the questions very detailed with many comments for
the enumerators. The enumerator had no freedom to make decisions based on experience; each question was
very structured and written properly. The surveying was done in three languages; Hebrew, Arabic and Russian.
Most of the text was not constant but was matched to second or third person according to the specific grammar
of the chosen language. A strong emphasis was given to the logical checks in order to avoid wrong data entered
into the questionnaire.

In this questionnaire of the population and housing census we made the first try of calling DLL from DEP for
finding and marking of streets. From the perspective of development languages the flow was .Net -> Blaise ->
.Net and this flow was not 100% stable. We got a few complaints from the field about a lost of focus in the street
selection screen. There weren't too many such complaints, but we were not able to ignore this issue. The problem
is that Blaise does not support work in a multi-threading environment. This is one of the lessons that we learned
from the 2008 population and housing census.

The main disadvantages of the ".Net + SQL" method which are the lack of flexibility and long development time
were not significant in the 2008 population and housing census since we had enough time allocated for
development after the final changes were done to the questionnaire.

We found two other disadvantages to this method:

 Comments on fields are not downloaded from Blaise to SQL – so they are not used
 The received signal status is not stored in the SQL tables. So after uploading the data from SQL to the

Blaise tables for further handling, the user is expected to re-approve signals that were already approved

3. Generic Management of Surveys

The number of different surveys that are conducted in the Israel CBS in the last few years has greatly increased.
They were done in different modes of data collection: mail, field, telephone or a combination of the above.
Internet surveys were introduced as well. The management systems for these surveys were written in Blaise +
Manipula or in several other development languages. The main difference between these systems was the
personal viewpoint of the person/department ordering the survey and the available resources for the project.

The purpose of the generic system for managing surveys is to reduce the resources needed to establish a new
survey.

A strategic decision that was made in the generic management system is to separate between the questionnaire
and the management system. Each questionnaire should contain a standard section with management data.

A generic survey will include the following sections:

 Survey definition and creation of required components
 Management for each of the different modes of data collection and integration between them
 Management of internal and external users
 Interface to the questionnaire
 Control and management tables
 Information security
 Archive management

The generic survey management system will use the "Blaise + .Net" method.

4. Summary

The three methods of developing surveys with Blaise each have their own advantages and disadvantages. The
best development method for a specific survey is chosen according to the requirements of that specific survey,
the different modes of data collection and other special requests.

The Israel CBS sees the Blaise as our main tool for questionnaire development. The development of a generic
survey management system will allow managing a survey with efficiency and user-friendliness. In addition the
interface between the management system and the questionnaire will be standard. This will reduce time and
resources needed to develop new surveys.

Appendix

Figure #1:
PROCEDURE GetMezahe
 parameters
 import
 p_Mezahe :string
 p_Shana :integer
 p_Reva :integer
 p_Shavua :integer
 p_Shlav : T_Shlav

 export
 p_TotzaatPkida :Integer

 Alien ('checkMezahe.GetMezahe','TotzaaBdika')
 ENDPROCEDURE
--
 PROCEDURE GetSqlData
 parameters
 import
 p_Mezahe :string
 p_Shana :integer
 p_Reva :integer
 p_Shavua :integer
 p_Shlav :integer

 export
 p_TaarSiumPkida : string
 export
 p_KnisaLeSviva : integer
 export
 p_StatusSheelon : integer
 export
 p_Ktovet : string
 export
 p_ShemYishuv : string
 export
 p_Mishpacha : string
 export
 p_SugMidgam : integer
 export
 p_PkidaHachnasot : integer
 export
 p_Merchav : integer
 export
 p_MispMishkeyBait : integer

 Alien ('checkMezahe.GetMezahe','FillFieldsFromSql')
 ENDPROCEDURE

Figure #2:

'Creating instance of central BLAISE DB for rakaz
Dim InpDb, OutDb As String
InpDb = ConfigurationSettings.AppSettings("MaslulBikoret")
OutDb = "C:\"
OutDb = OutDb & System.Environment.UserName & "\" & "ShBikoret"

objOutBikoret = objdatabaseManager.OpenDatabase("")
objOutBikoret.DictionaryFileName = InpDb & .bmi"
objOutBikoret.DataFileName = OutDb & ".bdb"

Opening Blaise Db
objOutBikoret.Connected = True

'*******************
'Filling Fields of Blaise Questionnaire from SQL Server DB
 MiluiSadotBeShelon(i, Par)
objOutBikoret.WriteRecord()

Closing Blaise Db
 objOutBikoret.Connected = False

'*******************
Opening the Blaise Questionnaire for user
fl.Copy(InpDb & ".bmi", outDb & ".bmi", True)
fl.Copy(InpDb & ".bdm", outDb & ".bdm", True)
mystr = MaslulDepExe & " " & outDb & " /G /X /K" & par
 id = Shell(mystr)
 Dim myproc As Process
 Dim ip As Boolean

‘Checking whether the user got out of Blaise Questionnaire
 myproc = System.Diagnostics.Process.GetProcessById(id)
 ip = myproc.HasExited()
 Do While ip = False 'Blaise is open
 ip = myproc.HasExited()
 Loop
 Return id

'*******************
'Saving changes from Blaise Questionnaire in SQL Server DB
 objdatabaseManager = New BlAPI4A2.DatabaseManager
 objOutBikoret = objdatabaseManager.OpenDatabase("")
 objOutBikoret.DictionaryFileName = InpDb & ".bmi"
 objOutBikoret.DataFileName = OutDb & ".bdb"
 objOutBikoret.Connected = True

 If KeyValueExists(objOutBikoret, Par) Then
 objOutBikoret.ReadRecord()
 End If
 GetNetunimFromShelon(i)
 SaveShelonInSql(i)
 objOutBikoret.Connected = False

'*******************
Deleting Blaise DB
If Not fl.Exists(OutDb & ".~lk") Then
 fl.Delete(OutDb & ".bfi")
 fl.Delete(OutDb & ".bjk")

 fl.Delete(OutDb & ".bpk")
 fl.Delete(OutDb & ".bsk")
 fl.Delete(OutDb & ".brd")
 fl.Delete(OutDb & ".bri")
 fl.Delete(OutDb & ".bdb")
 fl.Delete(OutDb & ".bmi")
 fl.Delete(OutDb & ".bdm")
End If
'*******************
Refreshing data set with updated data from SQL Server DB and showing it to the User
ds = exc.GetNetuneimFromBikoret(MyUser.Substring(5, 2), FlagSiyum, Shana_, Hodesh_)
dtReshima = ds.Tables(0)
grdReshLeBikoret.DataSource = dtReshima
grdReshLeBikoret.Refresh()

Figure #3:

private void SetStatus2BlField(FieldStatus dsStatus, ref Field blField)
{
 try
 {
 string sField4Status = blField.Parent.IndexedName + "." + blField.LocalName;
 switch (dsStatus)
 {
 case FieldStatus.DoNotKnow:
 blField.Database.get_Field(sField4Status).Status =
 BlFieldStatus.blfsDontKnow;
 break;
 case FieldStatus.Refusal:
 blField.Database.get_Field(sField4Status).Status =
 BlFieldStatus.blfsRefusal;
 break;
 }
 }
 catch(WriteToLogException ex)
 {
 cWriteToLog.WriteToLogExceptionOnly(ex);
 }
 catch(Exception ex)
 {
 cWriteToLog.WriteToLog(ex,"");
 }
}
__
 int indexPerson = GetIndex(fld.Name);
 // new 2008
 if((fld.Name.IndexOf("Butal.Men")>-1 || fld.Name.IndexOf("Hativa01S")>-1 || fld.Name.IndexOf("Hativa01D")>-1) &&
 indexPerson<=drAll.Length)
 {
 pdRow=(Packet.PersonsDataRow)drAll[indexPerson-1];
 }
 if(fld.Name.IndexOf("Hativa01A2")==-1 && fld.Name.IndexOf("Hativa01A")>-1 &&
indexPerson<=drResidentsArray.Length)
 {
 pdRow=(Packet.PersonsDataRow)drResidentsArray[indexPerson-1];
 }
 if(fld.Name.IndexOf("Hativa01A2")>-1 && indexPerson<=drNonResidentsArray.Length)
 {

 pdRow=(Packet.PersonsDataRow)drNonResidentsArray[indexPerson-1];
 }
 if(pdRow!=null && pdRow[strColumnNameInSql] != DBNull.Value)
 {
 if(fld.FieldDef.IsSet)
 {
 fld.TextAsSet = pdRow[strColumnNameInSql].
 ToString().Trim().Split(new Char[]{'-'});
 }
 else
 {
 fld.Text = pdRow[strColumnNameInSql].ToString().Trim();
 }
 }
 //set Status to Field(Blaise)
 if(pdRow!=null && dsHousehold.Tables[strTableNames[0]].Columns.Contains(strStatusFieldName))
 {
 if(pdRow[strStatusFieldName] != DBNull.Value)
 {
 string sStatus = pdRow[strStatusFieldName].ToString();
 int iStatus = Int32.Parse(sStatus);
 FieldStatus fs = (FieldStatus)iStatus;
 SetStatus2BlField(fs, ref fld);
 }
 }
__
 string param = pathBlaiseInfo+"SheelonU2006"+" /m"+pathBlaiseInfo+
 "SheelonU2006.bwm"+" /NOINITSCREEN"+" /g /x /l"+iLang.ToString()+" /k1"+
 " /e"+pathBlaiseInfo;
 if(kLastPressedKey==Keys.F9)
 {
 param=param+" /R";
 }
 broker.FromDsToBdbPath1_2(dsAllData,frCurrentFlat,pathBlaiseInfo+"SheelonU2006.bdb",sPrevDate,sUpdate);
 ProcessStartInfo psiB = new ProcessStartInfo(pathDep+"dep.exe",param);

 blaise= Process.Start(psiB);
 blaise.WaitForInputIdle();
 blaise.EnableRaisingEvents = true;
 blaise.Exited += new EventHandler(this.BlaiseEnd);
 bWait=false;

